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ON STRATEGIES IN DIFFERENTIAL GAMES* 

G, V. TOMSKIX 

Piecewise-programmed, piecewise-syn~esizing and recursive strategies in different- 
ial. games axe examined. It is shown that in a specific sense these strategies can 
be considered as special cases of upper A-strategies. The paper borders on the 
studies in /l-88/. 

1. Let the dynami.cs of a game be described by the vector differential equation 

dxldt = f (t, cr, u, v), t, <t < T, z E Rn, u E P (t) c U, u E Q (t) c V (I..11 
where a(i’) is a compact set in Euclidean space RF (fig) and at least one pair of controls 
u(t) and u (t) measurable on [I,, r] exists, such that u(t) E P (t), u (1) E Q (t)r to -< t< T. The 
functionf on the right-hand side of the motion Eqs. fl.11 is continuous on it,, T] >; R" X Tj X, 
Ii and on this set satisfies a Lipschitz condition in x with a constant 1. We shall examine 
two controlled dynamic systems /6/ govenzed by Eq. (1.1). 

Dynamic system Zl = (It,, T], A”,D,, D,,x), The set D1 (D2) of admissible controls of the first 
(second) player in system ZI consists of all vector-valued functions ELft)(V(t)) measurable on 
interval [r,, Tit satisfying theconditions u(t) EP (t) (~:ft)~-Q(t))~ TV< t< T. The gaths a(t) = 
x (t, t,,.~,, PA, V) of t2d.s system axe defined as the solutions of tne system of Eqs. il.11 when 
u = u(~)E& and u = v(t) ED, under the initial condition z (&I =I*. 

Dynamic system 2, = ([C,, 7'1, R", D1 (kl), D, (k,), x). The set DI (k,) (D, (k,)) of admissible con- 
trols of the first (second) player consists of all vector-valued functians a (G 3)(v (G x!) 
defined on it,, T] x R", taking values in u (W> u (G x1 E p ft) C U @ it, I) Gz 0 @) C V), to< a < T, 
zCZ R*,measurable in t on It,, T] for each fixed 2, and satisfying a Lipschitz condition in 
5 with constant k,(k,) on set if”, ?'I X A'". The set D, (k,) (D,(k&) can be looked upan as a set 
consisting of mappings of interval [to, r] into the set of functions 

Ui = {U (x) E C W", U1 Jf a (xl) - u (x~) II < 4 I/ % -- X2]/* for all 51~ Jz E H") 
(VI = (D @) E C iR", t'l I\] U &I) - u kzi Ii < kz i! Jl - rrZll, for all 3‘1% 52 f fz”)) 

The paths 5 (t) =x {t, t*,2*, U, c) of system 2, are definedas the solutionsofthe systemofEqs.JL.1) 
when u = IL (t, s) E D1 (k,) and L: = V(f, x)EDz (k,) under the initial. condition x G*) = x*. It is 
assumedthatfunction j ontheri.ghthandsideofthemotionEqs. (1.1) satisfy onset Ii&, T] X fi" X 
U s va Lipschitz condition in J', U. I‘ with a constant h. 

2. Piecewise-programmed stxategies /6,7/ in system Z_? will be called piecewise-synthesiz- 
ing strateyies. BY Dt” k,, t,] (D,” {k,, t*]) we denote the set of all piecewise-synthesizing 
strategies of the first (second) player in the quasidynamic system Z, (tp, x*) /6/. Let A =(t* = 

&,A < &A < . . . < f&j = T) be any finite partitioning af interval It,, T]. By Dl* It,1 (BeA [t,)) we 
denote~esetofafluprZer A-strategies, by D,,tt,j (B,, it,f) we denote the set of all A -strateg- 
ies, and by D1* [t,I(D,* [I*]) wedenote theset ofaflpiecewise-progranrmed strategies ofthe first 
(second) player in system Zl(f,,Z*) /6/. The following statement is valid. 

Theorem 1. Foranypiecewise-synthesizing strategy q E D1* [k,,t,]&E D,* [Fc,, t4]) there 
existsanupper d-strategy qbEL)tA ff,l &+E D,” t&l) such that 

x (G f,, 
for all d-strategies $A E OS6 ft.+] 

x*: v;t O&l = x (d, 1,, I*, q+: q?*) 

(x (h t,, z*, VA, 11’) = x (f, 1*, x*, (PA, II‘“) 
for all A-strategies vPn f LtlA fr,l). 

3. Let 

W,)=.l ~~TIW~*, f) x Dz I&W t)l, 
I ’ 

II(&)= I <v<T DI It,@ 
,&<T 

Definition I. .&ny finite collection of mappings a = (al?. . ., a,), where a = a1 E&I&, 
%) for n- 2 and 

a*~ [J &t&t), &:S(f*)-+ff(t*)r k=% q..,n 
L.+<l<T 

f(y”- ,1 .. 2 ) and where the conditions a, (~lr ut) E DI It, T) and ak (Q, Q) CZ DI It, e), t < 0 < 1", 
k = *,2, . * ., I& - 1, are fulfilled if (ZQ, vi} E D1 It,, 4 x D, ft,, f), t*C 1 < 1’, is called the 

first player's recursive strategy in system Z,(t,, $1. The second player's recursive strategy 
6 = (&,...,Ii,)in system Z,(t,, z’*) is defined analogously- 

The path z (t) = w; (t, t,, z*, a, b)of system x1, generated by a pair of recursive strategies 
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a = (a*, . . ..a.)and b=(br,. . .,b-d, is determined as follows. At the initial instant t, the 

players choose the controls 

UL = al G D1 [t,, tii), vi = bl E D, [t,, t,,) 

For definiteness let trr< tzr. Then at instant tn the first player chooses the control U2 = 

a2 (~1. vll) E D1 h h,) , depending on the controls ur and Vn realized by the players on interval 

rt,, till, where vll denotes the restriction of control VI = br on the interval It,, tn). (we note 
that in contrast to peicewise-programmed strategies the instant 112, in general, also depends 
on controls ui and Vu: LIZ = trz(Ui.Un)). We compare the quantities t,i and t1,. If t,1 < h,, 

then at instant &i the second player chooses the control 

v2 = 6, (ul, ~21. ~1) E D, l&l, t,, (~1, uzlr VI)) 

depending on the controls (~1, ~~1) and ~1 realized by the players on the interval [t,, t,l) (u2r 

denotes the restriction of control Uz on the interval [tll,t,l)). If t,1> tl,? then at instant 

ti, the first player chooses the control 

ua = an (Ul, UZ? ~12) E DI [tr,, & (~1, ~2, viz)) 

where VQ denotes the restriction of control VI on [t*, b,). 

Continuing this process, in at most n + m -- 1 steps we obtain uniquely the pair of 

controls u = (lLlr . . .A,) = u (a, b), v = (~1, . .,u,) = v (a, b) 

generated by the pair of strategies a and b . Thus, a pair of recursive strategies a and b 

determines a unique path z (t) = x (t, t,, X*, a, b) = x (t, t,, x*, u (a, b), v (a, b)) of system Zl. The 

choice of recursive stategy a = (~~,...,a,) by the first player signifies that in the course 

of the game he can change his control n times, depending on the information at hand. The 

control switching instants are not fixed at the start of the game as when applying piecewise- 

programmed strategies, but are determined by the player during the game. 

Notes. lo. Any finite collection of mappings a = (al'. ., an), where 

a = a, E r),, n = 1, a, E ti J% [I*, t), “k: b,, T] X R” - n (t*), 
t,<i<T 

n,, 2, k = 2.. _, n 

satisfying the following conditions: 

an (t? z, = '% it, I?, ak (6 x) E D, it, e), t < 0 < ‘f, k = 1,. ., n - 1 

is called the first player's positional recursive strategy in system I:,@*, s*) (see /8/). The 

second player's positional recursive strategy is defined in the same manner. Any positional 

recursive strategy a= (al,..., an) induces a recursive strategy where 

a; (% 4 -= ah- (1, x (t, 1*, 

a = (aI, a;,. ., a;), 
=t, ~1, ot), k = 2,. ., n 

thus, positional recursive strategies are special cases of recursive strategies. 

2O. A pair 'p== (A, vb), where A is any finite partitioning of interval [t*, TI and 'PA is a 

first player's recursive strategy 'PA = ('PA,I,. '7 'PA,~I(A)) such that ‘PA,k (“k-~? 0k-1) E 4 [tf_lV t;)) if 

(uk-_l' Dk_r) ED, [t,, L;_l) X D, It*, &J, I; = 2,. ., n (A) 
is called the first player's piecewise-programmed strategy in system Zl(t*.l*) (see /3,6,7/). 
In analogous fashion we can rephrase the definition of piecewise-programmed strategies for 

the second player. Consequently, 
D; [t*l C Dhp I&l, k = I,2 

where D; [t*] is the set of all recursive strategies of the h -th player in system I1 (l.,~,). 

We obtain the next statement by comparing the definitions of recursive and upper A- 

strategies. 

Theorem 2. For any finite partitioning 3. of interval It*) 2'] and any recursive strat- 

egy a E 0: [t,l (b E DL It,]) an upper A-strategy @ ES Df It,] (4:” ED,~ [t,]) exists such that 

U (a, $a) = U (CPA? $A), v (a, +A) = u ((F1? II‘d, (u ((PA, b) = u (VA, QA), u (wL\, b) = v ('PA> $*)) (3.1) 

for all $1 E DU [t*l ('PA E D~A [l*l). 

Proof. We take an arbitrary recursive strategy a = (ar...., 

partitioning A of interval [t*, Tl. 

a,)= D,’ [t,] and any finite 
We need to show that with the use of strategy a we can 

construct an upper A-strategy @ = ('ph,l, . ,.,rpAvn@))in system Ci(t,, z*), satisfying relations 

(3.1). We indicate a method for constructing the mapping 

'~"3 1: D, [t,, tlA) -p D, It,, tlA) (3.2) 

Let a,= D, Lt,, tl). If t, > t/, then ($3' is the restriction of control ul on interval[t*,t,*). 

In this case cp4l is independent of the control chosen by the second player on Lt,, tlyl. Let 

t, < t,A and a2 (a,, 01) E D, [t,, tz). If t, -= t, (aI, VI) > t,“, then VA* 1 =- a1 on interval It*, tl) I 
while on interval [t,,t,A) it coincides with the restriction of control ez (al, 4 on this 



interval. If on interval 
ur)< t,A,but the condition 
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k+, tl) the second player chose a control vi such that t, = tz (al, 

$3 = t3 f% a2 (6, sf; 4 2 &A 

is valid for the second player's control on interval It*, tJ, then (pA,r = r~r on interval [t*,t,], 

cpA, 1 = aa (a,, vl) on interval It,, t,,), and on It,, tlA) the mapping 
tion of mapping d3 (a,, a, (a,, 0,); Q). 

cpA,l coincides with the restric- 
Continuing these arguments, we construct the mapping (3.2). 

In analogous manner we can construct the mappings @s", k = 2,‘. .,n (A). The theorem is proved. 

4. Let us consider recursive strategies in system Zz(t,,x,). Let 

&(t,)= U [&W,, &,t)X &(k t,, 01, 
i,<l<T 

J&V,) = 2 <tj<T Dllh, be) 

&04T 

Definition 2. &y finite collection of mappings a = (al, . . ..G). where 

a = a, E u, lk,, t,, T), IL = 1, al E 1 
* 
<y<T & IkI, f,, t), ai, : s> @*) If II, (t*) ,z > 2, k = 2, . . . , n 

and conditions 

a, (k +) E & I&, t, T), ai, (ut, Q) ED, [k,, t, e), t< e < T, k = 1,2, , . .,Iz _ 1 

are fulfilled if {u,, vl} =I), [k,, t,,t) x Dz Ik,, t,, t), t, < t( T, is called the first player’s 
recursive strategy in system Z,(t,, x*). 

The second player's recursive strategies in system Z,(t,, zr*) are defined analogously. By 
D,‘[k,, t,] (DBrIkz, &I) we denote the set of all recursive strategies of the first (second) play- 
er in system Zz(t,, x*). The inclusions 

Di* Iki, t*l c Dir Iki, t*ly i = 1,2 

are valid. The following statement can be obtained by combining the methods of proofs of 
Theorems 1 and 2. 

Theorem 3. For any finite partitioning A of interval ft,, Tl and any recursive strat- 

egy (I ED,” [k,, t,l (b ED,’ lk2, t*I) an upper A-strategy 'pJ E D p It,1 ($A E I),d @,)I exi.sts such 
that 

x (6 t,, m*, a, QA) = x (k t,, I*, 'p", $a) 

(x (k t,, z*, (Pa: b) = +z (k t,, I*, V.5, 9")) 

for all +@I E D,A It,1 (9~ EE D,I [t,l). 
Analogous statements are valid for global strategies /9/. 

5. It can be proved that the sets @(8,, t,, 5*) aa @(8,, t,, 5*) of all paths of systems 
Z, (t*, 5.J and Z,(t,, 5.J coincide, i.e. 

@ (kW +%J = @ (21, t,, m*) = @(Z,, t,, z*) 

(if function f satisfies a Lipschitz condition in (x, U, u)). Let a certain functional (the 
second player's gain) Ii be specified on set @(t,, ra). Then we have defined the second play- 
er's gain function 

K (9"~ %) = H (x (*, $+t r*, tp", @A)) on set D,A &+I X &A it,] 

K (CPA, qL\) = H (X (*, t*, JJ*, (PA., $'I) on set D,A Lt,l x D,A It,] 

K (‘F: 9) = H (x . . t,, z*, 9, @) on set ‘I* 14, t*I x De* [k,, t*l (Di* It*1 c L)i* (k;p t*l, i = 1,~)s 

K (a, b) = N [z (0, t,, xc, a, 6)) on set &’ I&, t,l s D; Ik,, t,l c (Dir [t,l Di7 [ki, t*j, i=i, 2) _ 

Let us consider the antagonistic differential games: 

rr (t** 5) = W,' It,l, D,* Ii;], K> 
in the class of piecewise-programmed strategies, 

rz (t*, se) = <Q* &E,, t,l, D,* [k,, tJ, K) 

in the class of piecewise-synthesizing strategies, 

ra (&, '2*) = WI I&l, D,’ &I, K>, ra (tzw +I = <D,’ I&, &I, &’ Ikz, &I, K> 

in the class of recursive strategies. By Theorem 1 we have 

l.A((t*,Z*)== inf S"P K((PA, @A) > inf 
@A.E"IA ['+I J.*ED+[I,] 

SUP 
'P~'D1Atfd ~C%?‘*(lt:,fs] 

K(cpA+ 9) > 

inf Sup ~(cp,%)> sup inf 
~-E?lt*rbr,f,l cc-r~,*lk,, txl 

K(cp>$) > SUP inf 
&xwlB1, b-1 ELhvi. &I ~AED3A~*~l mA,~,A[rq] 

K @PA, $A) = VA (t*. X*) 

The inequalities 
I;h (t,,s,) > inf sup K (a,b) > sup inf 

~n>~[f,l b&h’U,l 
K (a, b) > vA(t,~x,) 

nED!P[f,l aah’tt,1 
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v* (t*, I*) > inf SUP K (a, b) > sup inf K(a, b)> VA(~,,X,) 
a~n,~[h.,.f,l bdh’W., 1.1 bED*r[h.,,!*, aen,~[k,,f*l 

follow from Theorems 2 and 3. Thus, if 

i:f li"(t,,~,)=sup VA((t,,t,) 
h (5.1) 

then all games rh(t*, z*), k = 1,2,3, 4, have the value 

val rl (t*, x*) = val rk (t*, Q), k = 2,3,4 
It is well known that if H is a uniformly continuous functional on set @((t,,z,) (see 

/lo/), then for the fulfillment of condition (5.1) it suffices to require that the function f 
on the right hand side of motion Eqs. (1.1) satisfy the condition 

inf sup f(l,/(f 
(1 

I, x, u(s),~(s)))ds - sup inf lirn~~0 
uEDz UED, 1, s 

(5.2) 
lrEn1 UELL LI 

<I>f (tl,s, u(s), U(S))) ds < Y(f? - tl), d o * 

for all 1, sE R", to< tr< t2.c T. This condition is fulfilled, for example, if 
f (t, 3, u, v;) = II (f, X, u) + jz (t, .c, p) 

where h and fz are continuous vector-valued functions. If P (t) = u and q (1) = li for all 
t,g-< T, then it follows from the saddle point condition for a small game /l/'. 

6. Let certain sets M and N exist in [to, Tl X K" and let an initial game position 
{t*, x*} be specified. We consider the following two problems /6/. 

Approach problem. For any number ~1. (1 find the first player's positional piece- 
wise-programmed strategy (c~ such that for all paths (ye =: (A (E), cpbtEj)) 

5 (t) -= x (t, t,, 5*, ‘PC, ?p’“‘), lp E D&E) It*1 
the relations 

are fulfilled. 

Evasion problem. Find a number E >0 and a second player's positional piecewise- 
programmed strategy Qe such that contact (6.1) is excluded for all paths (te = (A(&), I~~c~))) 

z (t) = x (t, t,, 5*, ([,3(E), Vc), ([“j(E) E DIA(E) It*1 
The following theorem on the alternative /1,2,6,10/ is valid. 

Theorem 4. If condition (5.2) is fulfilled, then either the Approach problem or the 
Evasion problem is solvable for any position {t,,z,}. 

The first player, in the Approach problem, and the second player, in the Evasion problem, 
employ upper A-strategies. They may even use past realizations of the controls of both play- 
ers. This is due to the fact that a player-ally cannot impose any restrictions on the inform- 
ation available to the opponent /l/. Theorems l-3 show that Theorem 4 on the alternative 
remains valid if the opponent is allowed to use recursive /8/, piecewise-synthesizing or global 
strategies /9/. 

REFERENCES 

1. KRASOVSKII N.N, and SUBBOTIN A.I., Positional Differential Games. Moscow, "Nauka", 1974. 

2. OSIPOV IU.S., On the theory of differential games in distributed-parameter systemes. Dokl. 
Akad. Nauk SSSR, Vo1.223, No.6, 1975. 

3. PETROSIAN L.A., Differential Pursuit Games. Leningrad, Leningrad. Gos. Univ., 1977. 

4. PONTRIAGIN L.S. and MISHCZENKG E.F., Problem on the escape of one controlled object from 
another. Dokl. Akad. Nauk SSSR, Vo1.189, No.4, 1969. 

5. PSHENICHNYI B.N., Structure of differential games. Dokl. Akad. Nauk SSSR, Vo1.184,No.2,1969. 

6. TOMSKII G-V., Approach-evasion problems in qausidynamic systems. PMM ~01.142,No.2, 1978. 

I. TOMSKII G.V., Existence of a value in semidynamic games. Mat. Zametki, V01.22, No.3, 1977. 



On strategies in differential games 445 

8. CHISTIAKOV S.V., On solving pursuit game problems. PMM Vo1.41, No.5, 1977. 

9. KUN L.A. and PRONOZIN Iu.F., On differential games. I. Avtomat. Telemekh., N0.5, 1971. 

10. TOMSKII G-V., Antagonistic games in dynamic systems in the sense of Kalman. In: Certain 

Aspects of Differential and Integral Equations and Their Applications, No.2. Iakutsk, 

Izd. Iakutsk. Unit., 1977. 

Translated by N.H.C. 


